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Unique labelling of many-electron states in multicentre 
systems 

K S Chan and D J Newman 
Department of Physics, University of Hong Kong 

Received 1 March 1983 

Abstract. General methods of generating complete sets of states for 1 ( ~ 2 n )  electrons in 
s-states on n centres are described. I t  is shown that a unique labelling of these states can 
always be obtained using a fictitious S, symmetry of the n centres. Explicit descriptions 
of eight, seven and four electrons on eight centres are derived and the problem of 
determining a unique labelling for these states on rigid eight-centre structures with cubic 
and lower symmetry is solved. 

1. Introduction 

This paper is a contribution to a programme of work on the general problem of 
describing the many-electron states and Hamiltonians for multicentre systems in terms 
of finite group representations. The aim of this programme is to develop finite group 
theoretical techniques which can be applied to multicentre systems in an analogous 
way to which the Racah (1949) Lie group scheme has been applied to the many-electron 
states of paramagnetic ions (i.e. one-centre systems). Our ultimate aim is to set up a 
general and realistic formalism for the description of phenomena such as the metal- 
insulator transition and intermediate valency which involve electron-correlation effects 
in molecules and in finite regions of crystals. In this work we develop a general 
description of many-electron states on multicentre systems in which the states are 
uniquely labelled in a way that is related to the symmetry of the system. 

The methods used build on group theoretical methods developed by Newman 
(1981, 1982) and Chan and Newman (1982). The present work extends that of Chan 
et a1 (1983). In particular, we shall find that there are considerable advantages in 
replacing the combinatorial methods used by Newman (1982) and Chan et af (1983) 
by induced representation methods. Other applications of these methods have been 
discussed by Litvin (1982) and Newman (1983). 

It should also be remarked that the permutation group labelling of states developed 
in this work is quite closely related to state labelling using unitary group representations 
as described, for example, by Harter and Patterson (1976), Paldus (1977) and Condon 
and Odabasi (1980, ch 7). The unitary group approach is not, however, entirely 
appropriate for the present type of application in which we wish to relate the state 
labelling directly to the irreducible representation labels of the finite group describing 
the real symmetry. 

@ 1983 The Institute of Physics 2389 
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2. State enumeration and labelling 

In  this section we describe two methods of enumerating the states of n electrons on 
n -centre systems in general terms, one of which has already been employed by Chan 
et a1 (1983) for the four-centre system. These techniques will both be employed to 
enumerate the Ss states in 5 3 and some physically realisable systems with eight 
electrons on eight centres will be discussed in § 4. Finally, in 0 5 ,  we shall show how 
to enumerate the states of 1 # n electrons on n -centre systems. 

Method B is easier to use than method A, although it involves a deeper understand- 
ing of the properties of symmetric groups. In particular, we note that it suggests a 
possible development of the combinatorial approach described by Newman (1982) in 
a more general context. 

Method A.  Combinatorial method of obtaining the states of n electrons in s-states on n 
centres (see also Chan et a1 1983) 

(1) The different possible spin configurations on each site are assigned 'colours': 
a = t, b = L, c = ?&. 

(2) Polya's theorem, in the generalisation described by Newman (1982), is used 
to determine the S ,  characters for all possible colourings corresponding to each possible 
configuration 2' of p paired electrons and n -2p unpaired electrons. All the 
characters produced in this way are positive. (Such a procedure could, of course, be 
employed for any number of electrons.) 

(3) Characters for classes involving odd permutations (even cycles) must be 
modified to allow for the antisymmetry under interchange of the a and b colourings. 
In configurations of the types 1" and lnP22  this simply requires the'sign of the characters 
of odd permutation classes to be changed. In the case of the configuration 2"/2 (i.e. 
c"") no change in the characters is required. For all other configurations rather 
complicated changes may be necessary. The method of finding these character changes 
is described by means of an example in lj 3. 

(4) The characters derived in (2) and (3) correspond to specific configuration and 
Ms values. Total spin characters are obtained by the usual procedure of starting with 
the highest Ms = S  and subtracting off these states from those with Ms - 1 to give the 
states for S = Ms - 1, etc until S = 0 is reached. 

( 5 )  The characters then determine the S ,  irreducible representation labels for the 
states of a given configuration and given total spin. 
Note that this procedure suffices to enumerate the states but it does not provide a 
unique labelling. 

Method B. Group theoretical method of obtaining the states of n electrons in s-states on 
n centres 

(1) List possible configurations in terms of p paired electrons, n - 2 p  unpaired 
electrons and p unoccupied centres. 

(2) Determine the spin (permutation) representations for a given configuration 
using the standard branching rules shown for n up to 16 in table 1. 

(3) The configuration group is defined as S n - 2 p  0 S ,  0 S,. The configuration rep- 
resentation for a given spin state is determined by: (a) taking the appropriate S n - 2 p  
space representation (say r) for the unpaired electrons conjugate to the spin rep- 
resentation determined in (2); (b) inducing the representation of the symmetric group 
S ,  from the representation r 0 [ p ]  0 [ p ]  of Sn-Zp 0 S, 0 S,. 



\o - 
m r( 

9 

m 
3 

N 
e 

3 
3 

C 
e 

m 

m 

r- 

\o 

F. 

b 

F i  

PI 

3 

II 
r 

Man y-electron states in multicentre systems 2391 

N - - 
N -  

Y - -  Y 

c -IN - FIN N V,N 



2392 K S Chan and D JNewman 

(4) If the induced representation of S, obtained from 3(b) contains repeated 
irreducible representations then an intermediate group between LZp 0 S ,  0 S, and 
S, can always be found which provides a unique labelling of the states. A suitable 
intermediate group is S , - ,  @ S,, because there is only one way of forming each of the 
representations of the group Sn-, from an arbitrary representation of S n - z p  and the 
identity representation [ p ]  of S,. Similarly the representations of S ,  can only be 
formed in one way from an arbitrary representation of S , - ,  and the identity representa- 
tion [ p ]  of S,. 

( 5 )  Finally, the representations of the spatial symmetry group of the n-centre 
system can be subduced from the S, representations, again using intermediate groups 
to make the subduction process unique. 

Quite apart from the relative simplicity of the analysis, method B has two distinct 
advantages over method A. The labelling obtained is unique and the S, group character 
table is not needed in the analysis. This latter point is important for large values of 
n for which explicit character tables have never been derived. 

3. State enumeration and labelling for an eight-centre system 

We shall employ, in turn, each of the two methods described in 0 2. This will show 
up the shortcomings of the combinatoric approach in relation to electronic states. It 
will also show how the induced representation method can be adapted for use in 
problems that have hitherto been treated combinatorially. This will complete the 
work on the link between combinatorial and group theoretical methods begun by 
Newman (1982). 

Table 2. Characters for the colourings corresponding to eight particles in various configur- 
ations on eight centres, where spin occupation is related to  colouring by a = T, 6 3 1 ,  c =  T i .  
Bracketed numbers and signs indicate the change in character that occurs when allowance 
is made for the antisymmetry of the states under particle exchange, 

Class l8  162 153 144 l4z2 1323 135 1’6 
Order 1 28 112 420 210 1120 1344 3360 

Configurations Colourings 
l 8 M S = 4  a 8 , b 8  1 ( - ) I  1 (-11 1 (-)1 1 (-)1 

3 a’b, ab7 8 (-16 5 (-)4 4 (-)3 3 (-12 

1 a’b3, a 3 b 5  56 (-)26 11 (-)4 12 ( - )5  1 0 
2 a 6 b 2 ,  a 2 b 6  28 (-)16 10 (-)6 8 (-)4 3 (-) 1 

0 a4b4 70 (-)30 10 (-)2 14 (-)6 0 0 
162 Ms = 3 a6c, b6c 56 (-)30 20 (-)12 12 (-)6 6 (-)2 

2 a’bc, ab’c 336 (-)120 60 (-)24 24 (-)6 6 0 
1 a4b2c ,  a2b4c  840 (-)210 60 (-) 12 36 (-)6 0 0 
0 a3b3c 1120 (-)240 40 0 48 (-)12 0 0 

l4Z2 Ms = 2  a 4 c 2 ,  b4c2  420 120(-60) 30 (-)6 32(-16) (+)6  0 0 
1 a3bc2,  ab3c2 1680 300(-60) 30 0 56(-40) (+)6  0 0 

0 0 0  0 a’b2c2 2520 360(0) 0 0 72(-24) 
1223 = 1 a 2 c 3 ,  b2c3  560 140(100) 20 0 40(8) 8(4)  0 0 

0 abc 1120 (+)240 40 0 (+)48 (+I12 0 0 
6 0 0  2 4 ~ s = ~  c 4  70 30 10 2 14 
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3.1. Method A:  combinatorial approach 

Polya’s theorem was applied to each of the five possible electron configurations Is, 
162, l4z2, l2z3, Z4 of the group s s  to obtain the coefficients of arbscf  shown 
(unbracketed) in table 2. Mistakes in this table were eliminated by checking that 
each row corresponds to a single equivalence class (see Newman 1982). 

A more direct way of obtaining single entries in the table is possible simply by 
counting the number of distinct ways a colouring may be fitted to the cycle structures 
of a class. For example, a 4 c 2  may be fitted into the cyclic structure (16)(2) in three 
‘modes’: (a4 ) (c2 ) ;  (a4c2)( l ) ;  ( a 2 c 2 ) ( a 2 ) .  In the first mode there are 6!/4! 2! = 15 
ways and in the second and third modes 15 and 90 ways respectively. The total 
number is thus 1 5 + 1 5 + 9 0 =  120, corresponding to the result shown in table 2. 
Although this form of calculation is tedious, it is less prone to error than the method 
described by Newman (1982). As we shall shortly find, it is also essential to use this 
approach in order to allow for the antisymmetry of electron exchange. 

Following Chan et af (1983) we note that each colouring (corresponding to a row 
in the table) may be associated with a definite Ms value. However, the positive 
characters shown correspond to colourings, and do not allow for the antisymmetry 
properties of electron exchange. Before attempting to relate the characters to irreduc- 
ible representations it is necessary to modify their values to make allowance for this 
property of the basis functions. 

In the study of the system with four electrons on four centres (Chan et a f  1983), 
this was simply done by changing the sign of the characters for all odd permutations 
in the l4 and 122 configurations. This approach can only be used for the 1* and 162 
configurations of the eight-centre system, giving the signs shown bracketed in table 
2. The signs are left unchanged for the 24 configuration, as the permutations 

Table 2. (continued) 

1‘24 1223 1’3’ 125 12’3 134 17 8 42 2’4 26 23’ 35 24 
2520 420 1120 4032 1680 3360 5760 5040 1260 1260 3360 1120 2688 105 

1 (-)1 1 ( - ) l  1 (-)1 1 (-11 1 (-)1 1 ( - )1  1 1 
2 ( - )2  2 ( - ) 1  1 ( - ) 1  1 0 0 0 0 0 0 0 
2 ( - ) 4  1 ( - ) 1  2 0 0 0 0 ( - ) 2  1 ( - ) 1  0 4 
2 ( - )6  2 ( - ) 1  3 ( - ) 1  0 0 0 0 0 ( - ) 2  1 0 
2 ( - )6  4 0 2 (-12 0 0 2 ( - )2  0 0 0 6 
2 ( - ) 2  2 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0  0 
2 (-)6 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 4 0 0 0 0 0 0 0 0 0 0  0 

( - ) 2  12(0)  0 0 ( + ) 2  0 0 0 0 ( - ) 2  0 0 0 (+) 12 
0 (-)2 0 0 ( + ) 2  0 0 0 0 0 0 0 0 0 
0 24(0) 0 0 0 0 0 0 0 0 0 0 0 (+ )24  
0 (-)12 2 0 (- )4 0 0 0 0 0 0 (- )2 0 0 
0 0 4 0 0 0 0 0 0 0 0 0 0  0 
2 6 4 0 2 2 0 0 2 2 0 0 0  6 
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interchange c = in this case, and no changes of sign occur. The other configurations 
pose a more difficult problem, however, as some cycles are acting on a = t and b=J 
and some are acting upon C =  T i ,  The only way of disentangling this situation within 
the context of the present method is to look individually at all entries for these 
configurations in those cases where the classes contain one or more odd permutations 
(or euen cycles). Luckily the non-zero entries are not very numerous. 

As an example of this character modification process we consider again the case 
of the colouring a4c2  and the class 162. Each of the three modes considered above 
may be associated with signs according to whether the odd (2) cycle is associated in 
with the single or double electron occupation: 

(17(2): ( a 4 ) ( c 2 )  +;  (a4C2) (1 )  +; (a2c2)(a2)  -. 
Hence the correct character for this case when the antisymmetry of electron exchange 
has been allowed for is +15 + 15 - 90 = -60. This figure is shown bracketed in table 
2. 

When the antisymmetrised characters have been determined we can associate the 
maximum MS characters for each configuration with the maximum S value for that 
configuration. This (Ms)m, = S set of characters can then be subtracted from those 
with a value of MS less than ( M s ) m a x  to determine the characters for S-1. Successive 
applications of this rule then give the characters for each S value of the configuration. 

3.2. Method B: direct (induced representation) approach 

Each of the five configurations can be associated with a definite number of unpaired 
electrons and hence, using table 1, with a set of possible total spin values. The table 
gives S, representations corresponding to these spin values, as follows. 

Configuration 1 '. In this case n = 8, so that the possible total spin values are S = 0 
or [42], S = 1 or [53], S = 2 or [62], S = 3 or [71] and S = 4 or [8]. 

Configuration 1 62. The n = 6 unpaired electrons have the possible spin values S = 0 
or [32], S = 1 or [42], S = 2 or [51] and S = 3 or [6]. 

Configuration 1 422. In this case n = 4,  so that S = 0 or [22], S = 1 or [31] and S = 0 
or [4]. 

Configuration 1 'Z3. This corresponds to the spin values S = 0 or [12] and S = 1 or [2]. 

Configuration Z4.  There are no unpaired electrons so that n = 0 and S = 0. 

In the case of configuration l8 the configuration group is Ss, so that each spin 
value determines a unique spatial representation conjugate to the spin representation 
given above: [42]+ p4], [53]+ [2312], [62]+ [2214], [71]+ [216], [8]+ [l']. 

and the s 6  representations [32], 
[42], [51] and [6] corresponding to the possible spin values will each induce several 
representations of Ss. This induction process, which uses S, as a intermediate group, 
is shown in figures 1 and 2. We only show the genealogy of repeated representations 
in figure 2 (for S > 1). Note that the use of S7 automatically provides a unique label 
for every Sg orbital state. The results obtained in this way agree with those shown in 
table 3 (previously derived using the combinatorial approach). 

The configuration group for 1 9  is s 6 0 ~ 1  
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Figure 1. Genealogy of the S = O ,  1 representations of the configuration 162 using 
s8 s7 @ SI s 6  @ SI @ SI. 

Figure 2. Genealogy of the S = 2, 3 repeated representations of the configuration 162 
using S8 3 S 7 0  SI 3 s 6  0 SI 0 S I .  

The generation of states for the configurations 142* and 1223 proceeds in much 
the same way using respectively the representations of S4 0 Sz 0 Sz and Sz 0 Ss 0 S 3  
to induce representations of Ss. In all cases only the identity representations [ n ]  of 
the last two groups are used in this process, together with the spatial representation 
conjugate to the appropriate spin representation for the first group. Figures 3 and 4 
show only the repeated representations of Ss, 
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[ 3  1 1  - [ z  1 2 3  

Figure 3. Genealogy of the S = 0, 1, 2 repeated representations of the configuration 1422 
using S8 3 S6 0 S2 3 S4 0 S2 0 S2. 

Figure 4. Genealogy of the S = 0, 1 repeated representations of the configuration 1223 
using Ss 3 Ss 0 S 3  3 S2 0 S3 0 S3. 
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As an example consider the case of the S2 0 S3 0 S3 representation [l'] 0 [3] 0 [3] 
corresponding to total spin S = 1 for the configuration 1223. The induced representa- 
tions may be obtained immediately from the direct product rules for S, (e.g. see 
Hamermesh 1964): 

S2OS3: [1'10[3]=[411+[3121, 

Ss 0 S3: [41] 0 [3] = [71] +[62] +[53] +[4'] + [612] + [521] + [431], 

[312] 0 [3] = [612]+ [521]+[431]+ [513]+ [4212]+ [3'12]. 

These results correspond to the column of table 3 labelled 1'23, S = 1. The repeated 
representations [431], [521] and [612] appear in figure 4. 

Finally we note that the configuration Z4  corresponds to the identity representation 
[4] 0 [4] of the direct product group S4 0 S4. This induces the representations [8] + 
[71]+[62]+[53]+[4'] into Ss as is shown in the final column of table 3. This 
completes the analysis. 

4. Description of eight-electron states on rigid eight-centre systems 

The problem of finding a unique labelling of the many-electron states on a physically 
realisable rigid array of lattice points of given spatial symmetry is now seen to be 
equivalent to finding a chain of subgroups relating S, with the spatial symmetry, so 
that each group-subgroup relationship leads to a unique subduction. Littlewood 
(1958) has studied the large subgroups of s8 and has, in particular, identified 3 
1344-element subgroup. This will be denoted G"' here. In Littlewood (1958) it  was 
denoted by the representation induced in s8 by its identity representation: namely 
[8]+[42]+[24]+[1s]. This group contains the 192-element group studied by Chan 
and Newman (1982). In order to make the subduction between s8 and G"' unique 
for the self-conjugate representations of Ss it was found to be necessary to insert the 
alternating group A8 = [8] + [ 1'1. The complete subduction for s g  3 A8 3 G"' is given 
in table 4. 

It is then easy to show that the subduction for G"' to the 192-element group 
(which we shall call G"') is also unique. The complete set of subduction relations for 

is shown in table 5 .  This provides a unique labelling for all the 12 870 
eight-electron states on eight-centre cyclic regions in a body-centred or face-centred 
cubic lattice. The unique labelling for a simple cubic lattice is related to that for the 
G"'states by the further subduction for G"' 3 0. As is shown in table 6, this subduction 
is also unique. 

G(1) ( 3 ' 2 )  

5. Enumeration of I-electron states for I # n 

We shall consider only the case I<n ,  as more than half-filled systems ( I > n )  are 
directly related to those with I < n  by particle-hole conjugation. In this case the 
electron configurations take the form 

l', 1'-'2,. . * ,  11-2r2', . . . 

and the possible spin-values range from t to $ ( I  -2r) for 1 odd, and 0 to i(1- 2r) for 
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Table 4. Branching rules for Ss=As(=[8]+[ls]) ~G"'(=[8]+[42]+[24]+[18]). Alter- 
nating group (As) representations are shown in the standard notation for S8 representa- 
tions. Suffixes a, fl  distinguish As representations subduced by SS self-conjugate rep- 
resentations. The representations of the 1344-element subgroup of A8 are labelled 
following the notation of Littlewood (1958, p 276). 

As representations G'" representations 

[8] = [ 1'1 

[62]= [2214] 
[612] = [3 15] 

[ 7 13 = [ 2 1 7  

[53]=[2312] 
[ 52 13 = [32 133 
[ 5 1'1 = [414] 

= ~ 2 ~ 1  
[431]= [3221] 
[42 '1 = [ 3 1 

~ 3 ~ 2 1 ,  

[42121, 
[42l2Ip 

[3221a 

Table 5. Branching rules for the 1344-element group G"' = [8] + [42] + [241 + [Is] to the 
192-element group G'2' = [8] +[62] + 2[4'] + [42'] + [3'12]+ 2[24]+ [2*14] +[la].  Charac- 
ter tables for both groups are given by Littlewood (1958, p 276). 192-element group 
representations are labelled following Chan and Newman (1982). 

GI" representations G ' ~ '  representations 

AP 
A: + + T: 
A:+A: 
A: + B: + E'- 
B:+E~+A: + E ~  
B:+A: 
A : + E ~  +A:+ 
T; + T; + A: 
T ; + E ~  + ~ f  
TP 
T: 

1 even. The configuration group for the general configuration l'"'2' is given by 

si-z,o s, 0 Sn-lr,. (5.1) 
Hence the states of the system of total spin S are formed from direct products of 
irreducible representations as follows: 

(5.2) 

The sets of irreducible representations in the first square bracket, corresponding to 
1 - 2r  unpaired electrons, are given explicitly in table 1 for 1 - 2r < 16. 

[2" - 2 r  -2s)'2 , o [ r ]  o [n - I + r ] .  
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Table 6. Branching rules for the 192-element group G”’= 
[8]+[62]+2[42]+[422]+[3212]+2[24]+[2214]+[1*] to the octahedral group 0 corres- 
ponding to a rigid structure of eight labelled points at the corners of a cube or the 
eight-centre cyclic regions of a simple cubic lattice. 

G ’ ~ ’  representations 0 representations 

AI 
T2 

Ti 
A2 
A2+E 
AI + E  
Tz 
Ti 
TI +T2 
Ai +T2 
A2 +Ti 

E 

E+Tl +T2 

Just as in the case 1 = n ,  a unique labelling of the states can be obtained by using 
S r - ,  as an intermediate group, as the direct products of irreducible representations 
with the identity representations [n  - 1 + r ]  do not produce any repetitions. 

5.1. Seven electrons on eight centres ( n  = 8 , 1 =  7 )  

In this case the possible configurations and spin states (see table 1 )  are: 

r = 0 , i 7 :  s = 4, ~ 2 ~ 1 1  s = 5,  p2i3] s =$, [217 s =;, [i’] 
5 r = I ,  1 2: s =+, ~ 2 ~ 1 1  s = 5 ,  pi3] s =:, [ 1 7  

r = 2 ,  1322: s =i, [21I s = 5 ,  [13] 

r = 3 , 1  23: s t, [ I ]  
(Note that the square brackets are orbital states conjugate to the spin states shown 
in table 1. )  

Forming the direct products shown in equation (5.2) we obtain the induced 
representations in Ss shown in table 7. The unique labels are not given in this table, 
so we illustrate this by considering the case of the configuration 1322 with S = 4. The 
direct product of the appropriate. representations of S3 0 S2 gives Ss representations 
as follows: 

[21] 0 [2] = [41] + [3 P I +  [32] +[221]. 

Each representation of Ss then induces a set of Ss representations which can be 
obtained by forming their direct product with the identity representation [3] of S3: 

[32] 0 [3] = [62]+[53]+[521]+[431]+[422]+[322], 

[312] 0 [3] = [612] + [521] + [513] + [43 11 + [4212]+ [3212], 

[221] 0 [3]= [521]+[422]+[4212]+[3221], 

[41] 0 [3] = [71] + [62]+ [53]+[612]+[521]+ [4’]+ [431]. (5.3) 
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Table 7. Enumeration of the 11 440 states for seven electrons on eight centres. 

Configuration 1’ 1 52 1322 123 - 
S = 1 / 2  312 512 712 112 312 512 112 312 112 

Irrep Dim 

1 
7 

20 
21 
28 
64 
35 
14 
70 
56 
90 
42 
56 
70 1 
14 1 
35 
64 1 
28 1 1 
21 1 
20 1 1  

1 1  
1 

1 
1 

1 
2 
2 2 
1 
1 1 
3 1 
1 

2 1 
1 3 1 
1 1 

1 2 
1 1 

1 

1 
2 
2 1 
2 
4 1 
1 2 
1 
3 1 
2 
2 2 
1 
1 1 
1 

1 
1 

1 
1 

No of states 224 448 288 64 1680 2688 1008 2240 2240 560 

We note, for example, that each of the four occurrences of [521] as recorded in table 
7 corresponds to a different Ss representation label. No repeated representations 
occur in (5.3), showing that the Ss, S8 labelling is unique for this configuration. 

Table 8. Enumeration of the 1820 states for four electrons on eight centres. 

Configuration l4 122 2’ - 
s=o 1 2 0 1  0 

Irrep Dim 

[81 1 
[711 7 
[621 20 
[612] 21 
[531 28 
[521] 64 
[513] 35 
[422] 56 
1421’1 90 
[414] 35 

No of states 

1 
1 

1 1 

1 
1 1 

1 
1 

140 630 350 

1 1 
2 1  1 
2 1  1 
1 2  
1 
1 1  

1 

168 504 28 
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5.2. Four electrons on eight centres :n = 8 ,  1 = 4) 
In this case there are only three configurations and the total spin takes integral values 
as follows: 

r = 0 , 1  4 : s = o , [ ~ ~ I  s = 1 , [ 2 1 2 ]  s=2,[ l4]  

r = 1 , l 2 2 :  s = o , [ ~ I  s = I , [ I ~ ]  

r = 2 , 2 2 :  S = O  

Forming the direct products shown in equation (5.2), we obtain the results given in 
table 8.  

In the case I # n the reduction of S s  irreducible representations to irreducible 
representations of the real symmetry of the system follows exactly the same pattern 
as given in Q 4. Hence we have obtained a unique description of the states for any 
number of electrons on eight sites. 

6. Sumrnary 

We have shown that the complete set of 1-electron states formed from (one-electron) 
s-states on n centres can be uniquely labelled if full symmetric group ( S , )  symmetry 
is assumed. Direct group theoretical, rather than combinatorial, methods were found 
to be easier to use to obtain this result, which holds for all values of n. 

In the case n = 8 it has been shown that a unique labelling of all 1-electron states 
on rigid arrays of the eight centres in rigid configurations with various spatial sym- 
metries can also be obtained. 

These results provide the first step in obtaining a full classification of many-electron 
states on multicentre systems which is directly related to the finite group symmetry 
of the real system. Further developments will involve generalisations of the one- 
electron basis set and finding systematic methods for evaluating many-electron matrix 
elements of one- and two-particle operators. Many-electron states of this type can 
then be employed to study the energy structure of multicentre electronic systems with 
arbitrarily strong correlation effects. 

The methods we have described are not restricted to s-states on separate centres. 
They could, for example, be applied to the Huckel-Hubbard method for planar 
unsaturated molecules (Matsen 1976), or to more general configuration interaction 
basis sets (Harter and Patterson 1976). 
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